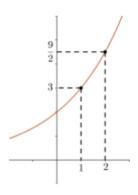
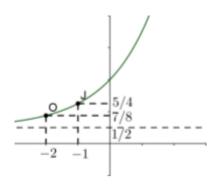
PIC 2021 - Programa de Iniciação Científica


Lista de Exercícios - Ciclo I - Encontro I

Professor: Douglas de Araujo Smigly


2021

- (1) Luiz ingeriu 500mg de amoxicilina às 08:00. Suponha que a meia-vida dessa substância é de aproximadamente 1 hora. (Obs.: Meia-vida de uma substância é o tempo necessário para que sua massa seja reduzida à metade).
 - (a) Determine a massa dessa substância no organismo de Luiz às 09:00, 10:00 e 11:00.
 - (b) Qual é a massa restante no organismo de Luiz após t horas da ingestão do remédio?
- (2) Considere $a=11^{50}, b=4^{100}$ e $c=2^{150}$ e assinale a alternativa correta

- (a) c < a < b. (b) c < b < a. (c) a < b < c. (d) a < c < b.
- (3) O processo de resfriamento de um determinado corpo e descrito por $T(t) = T_A + a \cdot 3^{bt}$, onde T(t) é a temperatura do corpo, em graus Celsius, no instante t dado em minutos, T_A é a temperatura ambiente, supostamente constante, e $a, b \neq 0$ são constantes. O referido corpo foi colocado em um congelador com temperatura de -18°C. Um termômetro no corpo indicou que ele atingiu 0°C após 90 minutos e chegou a -16°C após 270 minutos.
 - (a) Encontre os valores numéricos das constantes a e b.
 - (b) Determine o valor de t para o qual a temperatura do corpo no congelador é apenas $(2/3)^{\circ}$ C superior à temperatura ambiente.
- (4) Analise o gráfico abaixo da função $f(x) = k \cdot a^x$ e calcule:
 - (a) Os valores de $a \in k$.
 - **(b)** $f(0) \in f(3)$.

- (5) Existe solução real para a equação $2^{x-1} = 2 + \left(\frac{1}{3}\right)^x$?
- (6) Resolva a equação $3 \cdot 5^{x^2} + 3^{x^2+1} 8 \cdot 3^{x^2} = 0$.
- (7) Resolva a equação $4^{x^2} 5 \cdot 2^{x^2} + 4 = 0$.
- (8) Resolva a equação $4^x + 6^x 2 \cdot 9^x = 0$.
- (9) Seja $f(x) = a + c \cdot b^x$ a função cujo gráfico está abaixo. Calcule os valores de $a, b \in c$.

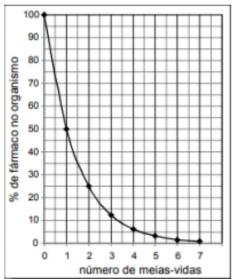
(10) Determine o maior conjunto possível, em \mathbb{R} , dos valores de x que definem a função

$$f(x) = \frac{5^{2x}}{\sqrt{1 - \left(\frac{1}{3}\right)^x}}.$$

- (11) Considere a inequação $x^{2x} \ge x^{x+3}$, sendo x > 0 e $x \ne 1$. Determine os valores de x que satisfazem a inequação.
- (12) Para quais valores de $a \in \mathbb{R}$ a inequação

$$2 \cdot x^2 + 4^{a+1} \cdot x + 8 > 0$$

é satisfeita para todo $x \in \mathbb{R}$?


- (13) Suponha que o número de indivíduos de uma determinada população seja dado pela função $f(t) = a \cdot 2^{-bt}$, onde a variável t é dada em anos e a e b são constantes.
 - (a) Encontre as constantes a e b modo que a população inicial (t=0) seja igual a 1024 indivíduos e a população após 10 anos seja a metade da população inicial.

2

- (b) Qual o tempo mínimo para que a população se reduza a $\frac{1}{8}$ da população inicial?
- (c) Esboce o gráfico da função f(t) para $t \in [0,40].$

(14) Um laboratório realizou um teste para calcular a velocidade de reprodução de um tipo de bactéria. Para tanto, realizou um experimento para observar a reprodução de uma quantidade x dessas bactérias por um período de duas horas. Após esse período, constava no habitáculo do experimento uma população de 189440 da citada bactéria. Constatou-se, assim, que a população de bactérias dobrava a cada 0,25 hora. Qual era a quantidade inicial de bactérias?

(15) A duração do efeito de alguns fármacos está relacionada à sua meia-vida, tempo necessário para que a quantidade original do fármaco no organismo se reduza à metade. A cada intervalo de tempo correspondente a uma meia-vida, a quantidade de fármaco existente no organismo no final do intervalo é igual a 50% da quantidade no início desse intervalo. O gráfico abaixo representa, de forma genérica, o que acontece com a quantidade de fármaco no organismo humano ao longo do tempo.

F. D. Fuchs e Cher I. Wannma. Farmacologia Clínica. Rio de Janeiro: Guanabara Koogan, 1992, p. 40.

A meia-vida do antibiótico amoxicilina é de 1 hora. Assim, se uma dose desse antibiótico for injetada às 12 horas em um paciente, qual é o percentual dessa dose que restará em seu organismo às 13 horas e 30 minutos?

(16) Um computador desvaloriza-se exponencialmente em função do tempo, de modo que seu valor V(x) daqui a x anos, será $V(x) = A \cdot k^x$, em que A e k são constantes positivas. Se hoje o computador vale 5000, 00 reais e valerá a metade desse valor daqui a 2 anos, qual será o seu valor daqui a 6 anos?

(17) Um jogo eletrônico funciona da seguinte maneira: no início de uma série de partidas, a máquina atribui ao jogador P pontos; em cada partida, o jogador ganha ou perde a metade dos pontos que tem no início da partida.

- (a) Se uma pessoa jogar uma série de duas partidas nas quais ela ganha uma e perde outra, quantos pontos terá ao final?
- (b) Se uma pessoa jogar uma série de quatro partidas nas quais ela perde duas vezes e ganha duas vezes, quantos pontos ela terá ao final?

- (c) Se uma pessoa jogar uma série de sete partidas, qual o menor número de vitórias que ela precisará obter para terminar com mais que P pontos?
- (18) ♥ (OPM 2011)
 - (a) Resolva a inequação, com $U = \mathbb{R}$:

$$\frac{2x+4}{4-x} > 0.$$

- (b) Encontre as soluções inteiras da equação $2^x(4-x)=2x+4$.
- (19) \checkmark (IMO 2006) Determine todos os pares de inteiros (x, y) tais que

$$1 + 2^x + 2^{x+1} = y^2.$$

(20) \checkmark Se o algarismo das unidades de 7^x é um número primo e o algarismo das dezenas de 9^x é diferente de 9, mostre que x não pode ser par.

Observação: Exercícios marcados com ♥ são extras.